Explainer #1a: Technical Appendix

Olivier Simard-Casanova*

May 24, 2024

Abstract

The technical appendix documents how I identified structural breaks in my newsletter article Explainer #1a. The newsletter article is available in English¹ and in French².

*Independent Economist, Statistician, and Writer. www.simardcasanova.net. Contact: www.simardcasanova.net/contact/.

¹o.simardcasanova.net/explainer-1a/.

²olivier.simardcasanova.net/decryptage-1a/.

Contents

1	Preliminary Notes					
2	BEAST					
3	Common Processing	3				
4	Figure N24.1Figure .4.2Data .4.3Statistical Processing .4.4Results .	4 4 5 6				
5	Figure N45.1Figure5.2Data5.3Statistical Processing5.4Results	9 9 11 11				
6	Figure N5 6.1 Figure . 6.2 Data . 6.3 Statistical Processing . 6.4 Results .	13 13 13 15 15				
7	Figure N7 7.1 Figure	17 17 17 19 19				
Bi	Dilography	21				

Bibliography

1 Preliminary Notes

Figures with numbers beginning with "N" refer to figures in the newsletter article. Figures with a single number refer to figures in the current document.

2 BEAST

BEAST (Bayesian Estimator of Abrupt change, Seasonal change, and Trend) is a Bayesian estimator that decomposes the seasonal component $S(\cdot)$ and the trend $T(\cdot)$ of a time series:

$$y_i = S(t_i, \Theta_S) + T(t_i, \Theta_T) + \epsilon_i.$$
(1)

 y_i is the value of the time series at period t_i , Θ_S and Θ_T are the seasonal variation signal and the trend signal, and ϵ_i is a noise assumed to be Gaussian.

As the data I use for this article is annual, there is no seasonal component. Equation 1 can be simplified as follow:

$$y_i = T(t_i, \Theta_T) + \epsilon_i.$$
⁽²⁾

The decomposition enables BEAST to detect structural breaks (i.e. changes in the trend) and to associate a probability of being a "true" structural break to each structural break candidate. BEAST is a meta-model, it detects possible structural breaks and computes the associated probability by averaging the results of a large number of linear sub-models.

BEAST uses a Markov chain Monte Carlo method. As a result, BEAST gives slightly different results each time it runs on a given dataset. Structural break dates vary slightly, as do the probabilities. To overcome this randomness, a solution is to run BEAST many times and to aggregate the results of the runs. Given that the aggregation would have required a considerable amount of work, given that this is a newsletter article, and given that the variations in results seem to be very small, aggregating the results of multiple runs would have been an unreasonable effort. Instead, I randomly selected one of the run.

BEAST makes no assumptions on the shape of the data or on the number of actual structural breaks.

The estimator is presented in detail by Zhao et al. 2019.

I use the Rbeast package, which implements BEAST for R.

However powerful the estimator is, the quality and accuracy of the results always depend on the quantity and quality of the input data. Most of the data I use for this article is irregular and has many missing observations. Estimates of the "true" date of structural breaks are likely to be less precise than if the data was regular and had no missing observations.

3 Common Processing

The two main functions Rbeast provides are beast() and beast.irreg() (when the data is irregular).

Rbeast is able to estimate missing data, according to a time step the user can define with the deltat parameter. If deltat is not specified, Rbeast itself estimates a time step.

As the data I use is annual, there is no need to deseasonalize. This is why I set the season option to "none".

I use a variety of conventions to facilitate my work with statistics and data. A guide is available on my website in English³ and in French⁴.

³o.simardcasanova.net/statistical-conventions/.

⁴olivier.simardcasanova.net/conventions-statistiques/.

4.1 Figure

4.2 Data

Raw data is shown in Table 1.

year	gdp
1	0.179
1000	0.205
1500	0.421
1600	0.561
1700	0.629
1820	1.175
1850	1.547
1870	1.963
1900	3.504
1920	4.825
1940	7.647
1950	8.462
1960	13.338
1970	21.942
1980	31.983
1990	43.034
2000	59.898
2010	89.808
2015	106.872
2016	110.407
2017	114.530
2018	118.766
2019	122.149
2020	118.590
2021	126.005
2022	130.113

Table 1: Raw data (d_2_raw).

The time series is irregular. There is one data point for year 1. Subsequent data points become more frequent as they approach 2022:

- every half a millennium from 1000
- every century from 1500
- every few decades from 1820 (sometimes two, sometimes three decades)
- every decade from 1940
- every half-decade from 2010
- every year from 2015

The time series is not complete, as there are many missing observations. Given the structure of the missing data (as shown in Table 1), I believe it is best to filter data from 1820 onwards, 1820 included, as the data becomes more frequent.

Listing 1: Code for data filtering.

I set a time step of 5 years to estimate the missing observations. A step of one year does not work, probably because the time step between each observation between 1820 and 1940 is too wide (i.e., there is not enough data).

```
1 beast.irreg(
2     y = d_2$gdp,
3     time = d_2$year,
4     deltat = "5y",
5     season = "none",
6     start = min(d_2$year)
7 )
```

Listing 2: Code for the BEAST regression.

4.4 Results

Figure 2 shows the BEAST plot. Figure 3 shows the console output.

Results change with the date selected at the data filtering stage, and with the time step used to estimate the missing observations. The variability is probably not due to BEAST or Rbeast, but rather to the fact that the data is irregular and has many missing observations.

The oldest data is also not "real" GDP data, but ex-post reconstructions. By nature, ex-post reconstructions are more imprecise than "real" GDP data.

Figure 2: BEAST plot.

| Ascii plot of probability distribution for number of chgpts (ncp) |

Pr(ncp = 0) =0.000 Pr(ncp = 1) =0.158 Pr(ncp = 2) =0.754 Pr(ncp = 3) =0.086 Pr(ncp = 4) =0.003 Pr(ncp = 5) =0.000 Pr(ncp = 6) =0.000 Pr(ncp = 7) =0.000 Pr(ncp = 8) =0.000 Pr(ncp = 9) =0.000	* *********************************** *	*****		
Summary for nur	nber of Trend ChangePoints (tcp)		
ncp_max = 9 ncp_mode = 2 ncp_mean = 1.93 ncp_pct10 = 1.00 ncp_median = 2.00 ncp_pct90 = 2.00	<pre>ncp_max = 9 MaxTrendKnotNum: A parameter you set ncp_mode = 2 Pr(ncp= 2)=0.75: There is a 75.4% probability that the trend component has 2 changepoint(s) ncp_mean = 1.93 Sum{ncp*Pr(ncp)} for ncp = 0,,9 ncp_pct10 = 1.00 10% percentile for number of changepoints ncp_median = 2.00 50% percentile: Median number of changepoints ncp_pct90 = 2.00 90% percentile for number of changepoints</pre>			
List of probable trend changepoints ranked by probability of occurrence: Please combine the ncp reported above to determine which changepoints below are practically meaningful				
tcp#	time (cp)	prob(cpPr)		
1 2 3	1995.000000 1955.000000 1875.000000	0.79538 0.64404 0.01800		

NOTE: the beast output object 'o' is a LIST. Type 'str(o)' to see all the elements in it. Or use 'plot(o)' or 'plot(o,interactive=TRUE)' to plot the model output.

Figure 3: Console output.

5.1 Figure

5.2 Data

A truncated view of the raw data is shown in Table 2. After 1805, data stays annual.

year	population
-10000	4432266
-9000	5616996
-8000	7242892
-7000	9577918
-6000	13201832
-5000	19075771
-4000	28774661
-3000	44487162
-2000	72586076
-1000	110419521
0	232123764
100	236904172
200	240611571
300	227549847
400	241539639
500	253237316
600	271478693
700	278185334
800	285713840
900	310967715
1000	323407571
1100	397923813
1200	444750686
1300	456388961
1400	442480612
1500	503240399
1600	516610918
1700	592706212
1710	613189457
1720	642718111
1730	664743383
1740	695346690
1750	745664133
1760	779891857
1770	818827900
1780	891048681
1790	931577684
1800	985340629
1801	987628322
1802	991098738
1803	994610260
1804	998163240
1805	1001758044

Table 2: Truncated view of the raw data (d_4_raw).

Data frequency increases from 1700 onwards, from one observation per century to one per decade. From 1800 onwards, data become annual. I filter data from 1700 onwards, 1700 included.

1 d_4 <- d_4_raw %>% 2 filter(3 year >= 1700 4)

Listing 3: Code for data filtering.

I use a time step of one year to estimate the missing observations.

Listing 4: Code for the BEAST regression.

5.4 Results

Figure 5 shows the BEAST plot. Figure 6 shows the console output.

Figure 5: BEAST plot.

Ascii plot of probability distribution for number of chgpts (ncp) |

Pr(ncp = 0) = 0.000	*			
Pr(ncp = 1) = 0.000	*			
Pr(ncp = 2) = 0.000	*			
Pr(ncp = 3)=0.000	*			
Pr(ncp = 4) = 0.011	*			
Pr(ncp = 5) = 0.946	****			
Pr(ncp = 6) = 0.043	***			
Pr(ncp = 7) = 0.001	*			
Pr(ncp = 8)=0.000	*			
Pr(ncp = 9) = 0.000	*			
Pr(ncp = 10)=0.000	*			
Summary for number of Trend ChangePoints (tcp)				

<pre>. Incp_max = 10 Incp_mode = 5 Incp_mean = 5.03 Incp_pct10 = 5.00 Incp_median = 5.00 Incp_pct90 = 5.00</pre>	<pre>MaxTrendKnotNum: A paramet Pr(ncp= 5)=0.95: There is that the trend component h Sum{ncp*Pr(ncp)} for ncp = 10% percentile for number 50% percentile: Median num 90% percentile for number</pre>	er you set a 94.6% probability as 5 changepoint(s). 0,,10 of changepoints ber of changepoints of changepoints			
List of probable trend changepoints ranked by probability of occurrence: Please combine the ncp reported above to determine which changepoints below are practically meaningful					
tcp#	time (cp)	prob(cpPr)			
1	1951.000000	0.96563			

I

1	1951.000000	0.96563
j2	1970.000000	0.89333
j3	1922.000000	0.46313
4	1881.000000	0.44196
j5	1821.000000	0.27487
6	1740.000000	0.04108
7	1770.000000	0.02588
8	1760.000000	0.02329
9	1747.000000	0.02158
10	1754.000000	0.01908

NOTE: the beast output object 'o' is a LIST. Type 'str(o)' to see all the elements in it. Or use 'plot(o)' or 'plot(o,interactive=TRUE)' to plot the model output.

Figure 6: Console output.

6.1 Figure

Figure 7: Figure N5.

6.2 Data

A truncated view of the raw data is shown in Table 3. Data is annual over the full time series.

year	growth_rate
1950	1.73
1951	1.74
1952	1.93
1953	1.90
1954	1.98
1955	2.00
1956	1.96
1957	2.05
1958	1.98
1959	1.70
1960	1.57
1961	1.66
1962	2.10
1963	2.27
1964	2.15
1965	2.08
1966	2.03
1967	1.98
1968	2.08
1969	2.04
1970	2.04

Table 3: Truncated view of the raw data (d_5_raw).

As the series is complete and regular, there is no need to filter the data.

```
1 d_5 <- d_5_raw
```

Listing 5: Code for data filtering.

It is also not necessary to estimate missing observations.

Listing 6: Code for the BEAST regression.

6.4 Results

Figure 8 shows the BEAST plot. Figure 9 shows the console output.

BEAST decomposition and changepoint detection

Figure 8: BEAST plot.

I	Ascii	plot	of	probability	distribution	for	number	of	chgpts	(ncp)
į	Pr(ncp	= 0)=0	.000 *							

Pr(ncp = 2) =0.003 Pr(ncp = 3) =0.001 Pr(ncp = 3) =0.001 Pr(ncp = 5) =0.173 Pr(ncp = 5) =0.173 Pr(ncp = 6) =0.745 Pr(ncp = 7) =0.038 Pr(ncp = 8) =0.001 Pr(ncp = 9) =0.000 Pr(ncp = 10) =0.000	* * * *** ********** *****************	*****				
Summary for num	nber of Trend ChangePoints (tcp)				
ncp_max = 10 ncp_mode = 6 ncp_mean = 5.78 ncp_pct10 = 5.00 ncp_median = 6.00 ncp_pct90 = 6.00	<pre>ncp_max = 10 MaxTrendKnotNum: A parameter you set ncp_mode = 6 Pr(ncp= 6)=0.75: There is a 74.5% probability that the trend component has 6 changepoint(s). ncp_mean = 5.78 Sum{ncp*Pr(ncp)} for ncp = 0,,10 ncp_pct10 = 5.00 10% percentile for number of changepoints ncp_median = 6.00 50% percentile: Median number of changepoints ncp_pct90 = 6.00 90% percentile for number of changepoints</pre>					
List of probable 1 occurrence: Please which changepoints	List of probable trend changepoints ranked by probability of occurrence: Please combine the ncp reported above to determine which changepoints below are practically meaningful					
 tcp#	time (cp)	prob(cpPr)				
1 2 3 4 5 6 7	1962.000000 1958.000000 1991.000000 1975.000000 2015.000000 1999.000000 1968.000000	0.99987 0.99738 0.90646 0.81112 0.61988 0.40004 0.40058				

NOTE: the beast output object 'o' is a LIST. Type 'str(o)' to see all the elements in it. Or use 'plot(o)' or 'plot(o,interactive=TRUE)' to plot the model output.

Figure 9: Console output.

7.1 Figure

Figure 10: Figure N7.

7.2 Data

Raw data is shown in Table 4.

year	gdp_per_capita	
1	800.000	
1000	800.000	
1500	1000.000	
1600	1000.000	
1700	1000.000	
1820	1127.730	
1850	1300.502	
1870	1543.227	
1900	2265.469	
1920	2493.315	
1940	3413.199	
1950	3360.164	
1960	4403.654	
1970	5970.658	
1980	7239.194	
1990	8210.969	
2000	9903.860	
2010	13121.591	
2015	14713.451	
2016	15029.054	
2017	15416.331	
2018	15814.849	
2019	16091.449	
2020	15461.187	
2021	16282.981	
2022	16676.750	

Table 4: Raw data (d_7_raw).

The data has the same structure as the data of Section 4. I use the same filtering and time step settings.

1 d_7 <- d_7_raw %>% 2 filter(3 year >= 1820 4)

Listing 7: Code for data filtering.

```
1
  beast.irreg(
2
           d_7$gdp_per_capita,
      у
3
       time
            =
               d_7$year,
4
                 "5y"
      deltat
               =
5
6
7
      season = "none"
             = min(d_7\$year)
      start
```

Listing 8: Code for the BEAST regression.

7.4 Results

Figure 11 shows the BEAST plot. Figure 12 shows the console output.

BEAST decomposition and changepoint detection

Figure 11: BEAST plot.

| Ascii plot of probability distribution for number of chgpts (ncp) |

	•			
Pr(ncp = 0) =0.000 Pr(ncp = 1) =0.197 Pr(ncp = 2) =0.760 Pr(ncp = 3) =0.039 Pr(ncp = 4) =0.004 Pr(ncp = 5) =0.000 Pr(ncp = 6) =0.000 Pr(ncp = 8) =0.000 Pr(ncp = 9) =0.000	* **** **** * * * * * * * * * *	*****		
Summary for nur	nber of Trend ChangePoints (tcp)		
<pre>. Incp_max = 9 Incp_mode = 2 Incp_mean = 1.85 Incp_pct10 = 1.00 Incp_median = 2.00 Incp_pct90 = 2.00</pre>	<pre>ncp_max = 9 MaxTrendKnotNum: A parameter you set ncp_mode = 2 Pr(ncp= 2)=0.76: There is a 76.0% probability that the trend component has 2 changepoint(s) ncp_mean = 1.85 Sum{ncp*Pr(ncp)} for ncp = 0,, 9 ncp_pct10 = 1.00 10% percentile for number of changepoints ncp_median = 2.00 50% percentile: Median number of changepoints</pre>			
List of probable trend changepoints ranked by probability of occurrence: Please combine the ncp reported above to determine which changepoints below are practically meaningful				
tcp#	time (cp)	prob(cpPr)		
 1 2 3	1960.000000 2005.000000 1880.000000	0.76138 0.75221 0.01925		

NOTE: the beast output object 'o' is a LIST. Type 'str(o)' to see all the elements in it. Or use 'plot(o)' or 'plot(o,interactive=TRUE)' to plot the model output.

Figure 12: Console output.

Bibliography

Scientific

Zhao, Kaiguang et al. (2019). "Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm". In: *Remote Sensing of Environment* 232, p. 111181. DOI: 10.1016/j.rse.2019.04.034.